~~~ EFFECTS OF ABSORBTION OF PHOTON ENERGY ~~~ BOND TYPES: RESULTS: EQUATIONS: sigma scattering X--X --> X* + e- + X+ sigma anti bonding X--X --> X* + X* pi singlet to triplet X==X <--> *X--X* pi singlet to triplet to new sigmas *X--X* + 2Y --> (photochemical rearrangement) Y--X--X--Y pi photoreduction *X--X* + 2AOH --> HX--XH + 2AO* conjugated pi singlets to resonant triplets X==X--X==X --> *X--X==X--X* conjugated pi singlet to triplet to sigmas *X--X==X--X* + 2Y --> (complex rearrangements) Y--X--X==X--X--Y conjugated pi photoreduction *X--X==X--X* + 2AOH --> HX--X==X--XH + 2AO* oxygen low energy triplet to high *O--O* --> [*O--O*] oxygen low energy triplet to singlet *O--O* --> O==O oxygen activated dye plus triplet *X--X* + *O--O* <--> oxygen to both singlets X==X + O==O ~~~ MECHANISMS OF SINGLET OXYGEN PRODUCTION ~~~ By Oxidation: -OO* + Fe+++ ---> O=O + Fe++ HOOH + ClO- ---> O=O + HOH + Cl- By Direct Photoactivation: *OO* + hv ---> O=O By Indirect Photoactivation Of A Dye: X=X + hv ---> *X-X* *X-X* + *OO* ---> X=X + O=O ~~~ ADDITION REACTIONS OF SINGLET OXYGEN ~~~ 1) Endoperoxide formation /O-O\ O==O + -C==C--C==C- --> -C C- \C=C/ 2) Dioxetane formation O--O O O O==O + -C==C- --> | | --> || + || H H -C--C- -C C- H H H H 3) Lipid peroxide formation OOH H | O==O + -C==C--C- --> -C--C==C- H H H H H H 4) Conversion of phenols to quinones HO-@ + O=O --> HO-@-OO --> O=@-OOH --> O=@=O + HOH \H \H ~~~ COMBINED OXIDATIVE EFFECTS OF UVBIT ~~~ 1) Photoreduction * * H H uv + -X==X- + 2AOH --> -X--X- + 2AOH --> -X--X- + 2(AO*) 2) Singlet oxygen production * * uv + -X==X- + *OO* --> -X--X- + *OO* --> -X==X- + O=O O=O + @ --> @OO --> @ + O=O 3) Dioxetane rearrangment to aldehydes O--O O=O + R-C==C-R' --> R-C--C-R' --> R-C=O + O=C-R' H H H H H H 4) Lipid peroxide production and reductive removal O=O + LH --> LOOH 2(GSH) + LOOH --> GSSG + LOH + HOH 5) Quinone production and redox cycling of quinone O=O + HO-@ --> O=@=O + HOH XH2 + Q + *OO* --> *XH + *QH + *OO* --> *XH + Q + HOO* 6) Theoretic cyclo-oxygenation of docosoids which trigger synthesis of nitric oxide /O-O\ O=O + -C=C-C=C- --> -C-C=C-C- ~~~ QUENCHING OF SINGLET OXYGEN ~~~ Singlet oxygen production by dye activation: * * uv + -X==X- + *OO* --> -X--X- + *OO* --> -X=X- + O=O Quenching of singlet oxygen by energy loss to pi bond: * * O=O + -Y==Y- --> *OO* + -Y--Y- The more extensively conjugated a system of pi bonds, the more active a quencher of singlet oxygen it is. Beta-carotene is the most famous example baring eleven: CH3 CH3 CH3 2(CH3)C-C-C-C \ | | \ / C=C-C=C-C=C-C=C-C=C-C=C-C=C-C=C-C=C-C=C-C=C / \ | | \ C-C-C-C2(CH3)2 CH3 CH3 CH3 Numerous aromatic compounds can do the same being extensively conjugated. ~~~ HOMOLOGY AMONG ARYL AMINES ~~~ ANILINES: PABA: SULFONAMIDES: HNH HNH HNH | | | C C C // \ // \ // \ HC CH HC CH HC CH | || | || | || HC CH HC CH HC CH \\ / \\ / \\ / C C C | | | R COOH O=S=O | HN-R ~~~ HOW SULFA DRUGS MIGHT DEFEAT THE BENEFITS OF ULTRAVIOLET BLOOD IRRADIATION THERAPY ~~~ 1) Quenching of Singlet Oxygen: NH2-@-SO2-NHR + O=O ---> NH2-*@*-SO2-NHR + *OO* 2) Reduction of Some of the Oxidants Produced: NH2-@-SO2-NHR + *X--X* ---> *NH-@-SO2-NHR + HX--X* 3) Imine Formation with Carbonyl Compounds: \ \ C=O + NH2-@-SO2-NHR ---> C=N-@-SO2-NHR + HOH / /